

A New Event Display Analysis Tool for MicroBooNE Handscan

Ellen Klein
Yale University

MicroBooNE Summer Student Presentations 08/03/12

Time

Wire #

Introduction to TPC

Wire #

LArSoft Reconstruction

Reconstruction Chain for LArTPC Data

Goal

- Create hand scan tool where evd users can select hits in a cluster (add/remove individual hits), run reconstruction and calorimetry algorithms on clusters, look at calorimetry/PID
- Evd will create clusters, all other reconstruction algorithms should work as is
 - Change fcl parameter so that use evd clusters

Hit Selection

- Draw lines over particle tracks in evd
 - Direction is important!
 Keeps track of start and end points
- Evd will select hits within a 1.5 cm box around line, selected hits are blue
- Box width is an option set by user

Hit Selection (2)

 Shift+click to add or remove hits from the cluster

Reconstruction

Clicking "Reload" button will pass selected hits to clustering producer

• Can pass these clusters to other reconstruction algorithms: track3Dreco, spacepts, spacepoints, seeds, etc.

ein 6

Thanks to Tingjun and Ornella for calorimetry and PID code and Mitch for display

Reconstruction (2)

Can also run calorimetry/PID on clusters from the evd to help determine particle type!

Muon Reconstruction

Data

MicroBooNE

- Works in MicroBooNE geometry too!
- Note clear resolution on delta ray
- Still exploring which tracking algorithms are best
- Plan to use this for MicroBooNE oscillation handscan

Current Status

- Fixing one last issue, then will check in the new Event Display code
- Evd creates clusters, all other reconstruction algorithms work without changes
 - Change fcl parameter so that they use evd clusters
- Step by step instructions for use are in backup slides

Next Steps

- Test with other reconstruction algorithms (ie seeds)
- Create multiple tracks per event and save reconstruction to event record (shouldn't matter for hand scan)
- Any other ideas? Let me know! (Ellen.Klein@Yale.edu)

Thank You!

Backup

Extras

- Box on left side of evd will display track parameters (length, phi, theta)
- Information calculated from the two lines that user draws NOT from track reconstruction

Step by Step (1)

- Decide which reconstruction algorithms you want to run, add these to your evd fcl file as producers
- Make sure they will look for the clusters produced by the evd (graph)

```
physics:
 producers:
 graph: @local::argoneut graphcluster
 spacepts: @local::argoneut spacepts
 calo: @local::argoneut calo
 pid: @local::argoneut_chi2pid
 filters:{}
 analyzers:
  evdisp:{module_type: EVD}
  angles: @local::standard spacepointana
 #list the modules for this path, order matters, filters reject all following items
 evd: [ evdisp ],
 #recopath: [showeranglecluster, showerfinder]
 recopath: [graph, spacepts, calo ,pid]
  ana: [angles]
 #end path are things that do not modify art::Event, includes analyzers.
 #and output modules. all items here can be run simultaneously
 trigger paths: [recopath]
 end paths: [ana,evd]..
physics.producers.showeranglecluster.ClusterModuleLabel:
                                                                 "graph"
physics.producers.spacepts.ClusterModuleLabel:, .
                                                                 "graph"
physics.producers.cato.TrackModuteLabet:
                                                                 spacepts"
physics.producers.pid.TrackModuleLabel:..
                                                                 "spacepts"
```


- Run the event display on a file that has reconstructed hits
- Zoom views so that / you can clearly see the track you wish to reconstruct
 - "Zoom Interest" is helpful
- Check "Make Clusters"

Step by Step (3)

- Click and drag mouse to draw a line over the track you want to reconstruct
 - Click on track vertex, then drag to end of track
- Click "Select Hits" to select
 hits in a box around the line,
 selected hits will turn blue
 - Adjust box width
 - Don't have to redraw line, just click "Select Hits" again

- Shift+click to add/remove individual hits from cluster
 - Useful for overlapping tracks, delta rays, etc.
 - Helpful to zoom in on parts of the track, especially end points!
- "Clear Hits" button will unselect hits in ALL planes

[Run/Event]= 1

Go Print

<- Previous | Next ----> | > | Reload |

Step by Step (5)

 When satisfied with selected hits, click "Reload" to make clusters and run reconstruction modules

Step by Step (6)

- Mitch added calorimetry window to the event display
- After reloading, click Window->Calorimetry
- Useful to look at particle ID to determine particle/event type

- Click "Next" to clear everything and go to next event in the run
 - Close the calorimetry window first, else will crash!
 will fix this though

